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1 Introduction

The severity of recent economic and natural disasters, such as the 2008 nancial crisis and

Hurricane Katrina, coupled with the continued decline in state and federal aid, have ignited interest

in understanding how local governance aects a region’s ability to recover and adapt. This is

broadly known as regional resilience. The notion of regional resilience has gained popularity, in

part, because it can be dened dierently depending on the audience (Christopherson et al. 2010;

Martin 2012). For instance, Pendall et al. (2010) argue that economic resilience comprises two

separate, yet related concepts: rst, the ability of a region to return to a pre-existing state of

economic activity and, second, the responsive adaptations and adjustments of a region’s complex

systems.

While they do not all use the phrase economic resilience, there are many studies that look

at how economic activity returns to previous levels after an exogenous shock, including the large

stream of literature stemming from Blanchard, Katz et al. (1992). Additional studies have looked at

the underlying factors that create resilient regions. These include pre-shock conditions like capital,

including human capital (Di Caro and Fratesi 2018) and industry diversity (Watson and Deller

2017), along with policy responses to the shock (Wolman et al. 2017).

It is also well established in the literature that regions in which innovation ourishes are more

resilient to economic downturns and unanticipated shocks (Clark et al. 2010; Bristow and Healy

2018; Clark and Bailey 2018; Mustra et al. 2020). At the same time, the literature is sparse on the

mechanisms explaining why this would be so. Several studies point to a notion of Schumpeterian

innovation, where regions with innovative residents have the ability to learn, explore, and adapt to

a changing economic environment (Filippetti et al. 2020; Mustra et al. 2020). Viewed through this

lens, regions innovate and adapt to negative economic shocks due to local knowledge accumulation

and dissemination.

In this paper, we combine data from the Census Bureau’s quinquennial Census of Governments

with detailed disambiguated patent data from the PatentsView Project to empirically examine

the relationship between local governance structure and regional innovation. We focus on U.S.

metropolitan statistical areas (MSAs) because approximately 95% of all patenting activity in the

U.S. takes place within metro areas. We follow Lee and Wang (2020) and measure governance using
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both horizontal and vertical metrics of government fragmentation and dispersion. Fragmentation

measures are based on the number of general-purpose and special-purpose governmental units

per 100,000 people in the MSA, while scal dispersion measures are based on the distribution of

government expenditures across the various units.

We leverage the disambiguated patent data to provide a perspective on innovation that is more

nuanced than the overall rate of patented innovation. For example, we distinguish between pat-

ents awarded to inventors aliated with organizations and those awarded to unaliated inventors.

Within each subgroup, measures of innovation concentration are constructed based on the num-

ber of distinct inventors and the primary technology class of the patent awards. Recent work by

Wagner and Pavlik (2020) shows that the concentration of patented innovation often varies greatly

across metro areas, even when overall rates are similar. Understanding how governance structure

aects innovation concentration (or diusion) could have important implications for resilience be-

cause regions with more concentrated innovation, and thus a lack of diversication, may be more

vulnerable to economic disruptions.

To account for potential simultaneity between innovation and local governance, we pursue an

instrumental variables (IV) strategy to isolate a source of exogenous variation in the governance

metrics. We instrument for current governance structure (1990 - present) using the region’s diversity

of places of worship in 1952 and governance structure metrics from 20 years earlier. We argue, and

provide evidence, that these instruments satisfy the exclusion restriction because current inventors

and ideas dier from the ideas and inventors from a generation ago.

Our results indicate that the presence of more general-purpose government units (per capita) are

neutral for local innovation. That is, potential policies and institutions due to competition among

local municipalities does not seem to inuence the number of inventors or the range of products.

However, consistent with the broader literature on vertical fragmentation, we nd evidence that

regions with a greater density of special-purpose government units have signicantly less inclusive

(or more concentrated) innovation both in terms of innovators and new products. This result

appears to be driven more by the number of school districts in a metro area than by the number

of other forms of special-district governments. We oer several potential channels through which

additional local fragmentation in school districts could hinder inclusive innovation.

The implications of our results are clear. Previous work has found that communities that
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rely more heavily on special-purpose government units (school districts plus special districts) have

weaker economic performance. Our results imply that they also have less inclusive innovation,

making them potentially more vulnerable to sector-specic economic shocks or to the loss of a key

innovator.

The following sections of the paper discuss the relationships between innovation, resilience,

and governance, describe our data and identication strategy, present empirical results, and oer

concluding remarks.

2 Background

2.1 Innovation and Resilience

There is signicant variation in how regions recover from economic shocks and natural dis-

asters (Hill et al. 2012). This has led policymakers and scholars increasingly to search for sources of

economic resilience. In particular, a common question is this: what economic characteristics or gov-

ernment policies help a region withstand economic shocks and develop new growth paths? Despite

the expanding literature, why some regions are more resilient than others remains an open question

(Martin 2012; Christopherson et al. 2010; Martin and Sunley 2020). Thus far, empirical work on

regional resilience has tended to concentrate on the structure of the local economy, in particular,

regional industry characteristics like specialization (Palaskas et al. 2015), and complementarities of

the industry mix (Cainelli et al. 2019), among others.

Understanding the structure of the local economy requires more than mere understanding of

the characteristics of the industries within it. There is, for example, a well-established link between

innovation, long-term economic growth and economic competitiveness (Bristow and Healy 2018).

Recognition of this linkage has led to more research on the role that regional capacity for innovation

plays on economic resilience after a region experiences a negative shock. For example, recent work

by Filippetti et al. (2020) and Bristow and Healy (2018) provides evidence that more innovative

regions either avoided the negative shock from the 2008 nancial crisis or recovered quickly from

it.

Scholars have gravitated towards the notion of Schumpeterian innovation to understand how

innovation impacts economic resilience (Filippetti et al. 2020; Bristow and Healy 2018). According

to Schumpeter, innovation, i.e. the ability and capacity to produce and disseminate new products,
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produces lasting endowment eects. The endowment eects result in capital accumulation by

rms and knowledge spillovers to entrepreneurs, both of which can be leveraged during an adverse

economic shock (Storper 2011). Evolutionary economic geographers have begun to esh out an

understanding of the role of innovation in regional economic evolution and resilience by drawing

on the seminal work of (Schumpeter et al. 1939). In particular, a Schumpeterian notion of creative

destruction has the negative shock acting as an economic driver because unproductive sectors or

resources are replaced by creative entrepreneurs (Simmie and Martin 2010). In this view, innovators

help regions adapt to changing circumstances and fuel economic revival.

Recent advances in understanding regional networks point to a related mechanism for innov-

ation promoting economic resiliency. In this light, regions comprise networks of rms, industries,

institutions, and people, all dependent on each other. Accordingly, urban population alone does not

necessarily imply resilience; instead, what matters is how the relevant entities within the area are

connected (Capello et al. 2015). The connectivity of the network brings together resources, know-

ledge and technological skills that can be harnessed either in a growing or a contracting regional

economy (Cooke et al. 2011). For instance, Balland et al. (2015) examine patent applications in

U.S. cities from 1975 to 2002 and nd that cities with more diverse knowledge bases recover more

quickly from economic shocks. Cappelli et al. (2021) generalize this concept and develop a measure

of technological resilience – the ability to create and maintain knowledge over time. They nd

that areas with more technological resilience experienced smaller declines in unemployment during

the 2008 nancial crisis. A region’s network of innovators and entrepreneurs could play a similar

role. For instance, more locally connected innovators could take advantage of local resources and

opportunities. Furthermore, locally connected innovators could reduce the likelihood that other

high-skilled people leave the area during an economic downturn (Boschma 2015).

2.2 Local Governance, Economic Development and Innovation

The U.S. has one of the most decentralized forms of governance in the world, a unique struc-

ture that lends itself to lines of inquiry ranging from the optimal distribution of activities across

governmental units to the appropriate use of policy to promote various economic objectives (Oates

1999). With state and federal aid to local governments shrinking by roughly 50% since the 1970s,

there is new interest in understanding how increasingly self-reliant local governments can operate
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eectively.

Early perspectives on the scal federalism approach to municipal governance, such as Musgrave

(1959) and Oates (1972), focused on what is now commonly referred to as the assignment prob-

lem: understanding what tax and expenditure functions should be performed by dierent levels of

government. According to this work, when spillover eects to other jurisdictions or economies of

scale are present, provision is optimized when either a higher level of government provides a service

or when smaller levels of government coordinate their actions (or consolidate), thus internalizing

the spillover and reaping the eciency gains. Thus, the lack of coordination or the lack of a single

overarching authority, often called fragmented local governance, is likely to be inecient and to

hinder economic growth.

Opponents of the regional or monocentric view argue that many municipal governments are

essential for economic development. For instance, Ostrom et al. (1961), building on the earlier

work of Tiebout (1956), argue that polycentric municipal government fosters competition and

leads to more ecient public goods delivery better aligned with citizens’ preferences. As Aligica

and Tarko (2012) note, the polycentric view hinges on many independent decision-making centers

that overlap and interact to form an organic social order.1

So while the monocentric view of governance points to overlapping and duplicated responsibil-

ities as a key source of ineciency, polycentrists assert the same mechanism is essential to ensure

public sector competition (Aligica and Tarko 2012).2 Furthermore, each type of governance struc-

ture can yield dierent institutions, policies and regulations that drive economic development and

subsequent innovation.

Empirical evidence lacks consensus on whether polycentric or monocentric governance struc-

ture is best suited to promoting economic development and resiliency. For instance, Hammond and

Tosun (2011) and Grassmueck and Shields (2010) nd that a higher number of general-purpose

governmental units (per square mile and per capita) is correlated with slower population, income,

and employment growth. Goodman (2020b) and Stansel (2005) nd that more government frag-

mentation is positively associated with growth. The geographic context also seems to matter, as

1An often cited criticism of polycentric governance is that it can lead to urban sprawl. See Carruthers and
Ulfarsson (2003) for an overview of this work.

2The polycentricity approach to municipal governance is far more nuanced than we can address in this paper.
See Aligica and Tarko (2012) for a more thorough discussion of the key principles and historical foundations.
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Goodman (2020b) and Stansel (2005) nd that metro areas grow more slowly when a large share

of their total population is located in the principal city.

Other studies have addressed the governance question by capitalizing on the rare occasions when

local governments have consolidated. In general, empirical evidence that consolidation improves

economic development, services, or delivery has been somewhat sparse (Jimenez and Hendrick 2010;

Carr and Feiock 1999). However, recent studies by Hall et al. (2020) and Egger et al. (2022), which

rely upon modern causal inference methods, nd evidence that consolidation enhances economic

development in some situations.

While the literature on general-purpose government shows that the eects of fragmentation are

mixed, there is greater agreement that more fragmentation in special-purpose governments may

be detrimental to growth (Lee and Wang 2020; Goodman 2019, Berry 2008; Stansel 2006). For

instance, Berry (2008) and Stansel (2006) nd a strong positive relationship between the size of

local governmental units and the number of overlapping special-purpose governments. Moreover,

Lee and Wang (2020) nd that median income and home prices recovered more slowly following

the 2008 nancial crisis in metro areas with more special-purpose governments (per capita). This

suggests that special-purpose governments reduce regional resiliency. One limitation of this study,

however, is that Lee and Wang (2020) oer no discussion of any theoretical mechanisms that would

explain their ndings.

Unlike general-purpose governments, special-purpose governments are comprised of school dis-

tricts and special-districts governments. Common special-district governments include water- or

re-service zones, economic development districts, housing development authorities, and regional

transportation authorities. Thus, special-purpose governments generally provide a single service

and often overlap jurisdictions with other governmental units. They also typically have the author-

ity to issue debt and collect taxes, tend to be less transparent, face little to no regional competition,

are more likely to have unelected leaders, and accrue larger volumes of debt per capita than general-

purpose government units (Martell 2007; Stansel 2006).

Special-purpose governments are also proliferating rapidly. Between 1987 and 2007, Jimenez and

Hendrick (2010) found that 96% of the more than 8,100 new governmental units created in the U.S.

were special-purpose governments. However, the reasons underlying their creation and dissolution

is not well understood (Goodman 2020a). While some may solve ineciencies arising from spillover
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eects or provide improved services demanded by residents, others may have emerged to circumvent

tax, expenditure, and debt limitations faced by general-purpose governments (Goodman 2020a).

If the transparency and accountability in special-purpose governments leads to more scal illusion

for voters, then their continued (net) expansion would be consistent with Brennan and Buchanan

(1980)’s Leviathan theory of government growth.

Our analysis focuses on the local concentration (or diusion) of innovation in terms of inventor

networks and types of products. There are plausible channels through which both polycentric and

monocentric governance can result in policies and institutions that either help or hinder progress.

For instance, decentralization of municipal government could produce competitive pressure that

benets inventors. This could come from a direct link where local municipalities provide services

inventors need. Stokan and Deslatte (2019) show that horizontal fragmentation increases the use

of economic development incentives to attract rms to a municipality, while more special-purpose

districts yield fewer incentives but expand community development activities. Both of these mech-

anisms could yield stronger innovation networks. More broadly, local competition could produce a

lower regional tax environment that is more conducive to inclusive innovation in the number of in-

ventors and products. In a similar vein, if decentralization of governance leads to greater economic

freedom, as research by Stansel (2013) suggests, then it may also support organic creation from a

broader set of innovative rms and entrepreneurs.

In contrast, polycentric governance could lead to entrepreneurs and programs siloed within each

municipality. This could result in weaker ties and information networks along with a less diverse ar-

ray of products. Also, from an economic development perspective, individual regional governments

could compete to pick winners and steer economic development toward local government-favored

industry clusters (and rms) rather than enacting policies that promote a market-driven process.

The focus on specic clusters could lead to more innovation (i.e. more patents in certain sectors),

but a lower diversity of products.

The increased local competition with fragmented governance could also hinder eective regional

collaboration for education, transportation networks, and workforce development, all of them help-

ful in facilitating knowledge spillovers. Thus, inventors are isolated and not beneting from the

region’s broader knowledge base. Smaller governmental units are also at greater risk of scal dis-

tress if their tax base becomes too narrow or too heavily dependent on a single industry. For
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example, the collapse of the steel industry led to tremendous scal stress for some municipalities

in Allegheny County, Pennsylvania, one of the most fragmented counties in the nation in terms

of governmental units (Archibald and Sleeper 2008). Fiscal stress could then inhibit policies that

incubate small innovative rms and entrepreneurs. Finally, polycentric governance could induce

greater rent-seeking as rms that are more mobile pit municipalities against each other in an eort

to gain (inecient) subsidies.

More monocentric regions may also have advantages that spur innovation. The most obvious

mechanisms are eciency gains due to lower production costs and better policy coordination. Owing

to their size, larger governments may also have greater access to state and federal funding, more

capacity to promote economic development, and lower transactions costs in forming public-private

partnerships that bolster economic development and resiliency (Archibald and Sleeper 2008). Thus,

monocentric governance could utilize policies, such as innovation districts, to take advantage of a

critical mass of innovators in their jurisdiction. This in turn could lead to more inclusive innovation.

As governments grow in size and inuence, however, there is also a tendency for the regulatory

regime to expand (Higgs 1991). This could lead to a reallocation of rm resources to satisfy compli-

ance and reduce the incentive for innovation (Aghion et al. 2020). In addition, increased regulation

could erode trust in government because it leads to more public corruption and regulatory capture

(Taylor 2016; Holcombe and Boudreax 1991). As Taylor (2016) notes, interest groups, including

industry trade groups, often support higher taxes, regulations, and more complex procurement

policies that favor the status quo and ultimately retard scientic and technological progress.

As we discussed above, there are a range of potential mechanisms where the local governance

structure, and related policies, institutions and regulations, can inuence local innovation products

and inventor networks. These mechanisms can have competing impacts on our measures of innov-

ation. Next, we turn to the data and empirical strategy to shed empirical light on the relationship

between local governance structure and innovation.

3 Data and Identication Strategy

3.1 Patented Innovation

Our innovation measures are derived from the detailed utility patent data provided by Pat-

entsView Project, a collaborative eort between several universities, private-sector organizations,
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and the U.S. Patent and Trademark Oce (USPTO). The PatentsView data are constructed from

the USPTO records, covering both patent applications (2001-present) and granted patents (1976-

present). This database diers from earlier iterations of data provided by the USPTO that assigned

a unique identier to individual patent awards only by applying a disambiguation algorithm to every

patent’s inventor(s), assignee(s), and lawyer(s).3 These disambiguated data can then be merged to

numerous data elds, allowing for a very nuanced examination of patented innovation that allows

one to track the behavior of individual inventors and organizations across both space and time.

Over our sample period (1990-2018), there were more than 2.8 million unique patents awarded

to more than 1.4 million U.S. residents representing more than 200,000 organizations (or assignees).

Of these awards, roughly two-thirds were granted to organizations and more than 93% to inventors

who lived in metro areas. One in four inventors (in MSAs) were unaliated with an organization.

Collectively, these individuals were awarded roughly 14% of the patents granted to residents of

metro areas over the nearly 30-year period we examine.

Because of the importance of knowledge diusion in encouraging innovation, we capitalize on

the disambiguated nature of the patent data and construct measures of inventor networks within

and across MSAs. We do so following Breschi and Lenzi (2016), who propose measures of the size

and interconnectedness of inventors when every inventor is treated as a distinct node in a broader

network of inventors. The within-MSA, or regional inventor network, measure is given by:

regional inventor networkMSAjt
=

n
k=1

n
l=1
k ̸=l

1
dkl

n− 1
(1)

where dkl is the geodesic distance between inventors k and l in MSA j at time t. The geodesic

distance is the shortest path, or the minimum number of intermediaries, from any inventor k to

every other inventor in the network. The regional inventor network measure is bounded by 0 and n,

where 0 indicates that no inventor collaborated on a patent with any other inventor, and n implies

that every inventor was a collaborator with every other inventor in the network. In short, larger

values of the regional innovation network metric demonstrate a higher average level of collaboration

within an MSA.

3A patent’s assignee is the individual or organization that owns the legal property right to the patent. Patents
are assigned to MSAs based on the residence of the inventor(s) and are fractionally weighted by the number of
co-inventors. Patents where the primary product/technology class is design or plant are excluded.
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Figure 1 shows the average rate of patented innovation per 100,000 residents (Panel A) and

the average regional inventor network density (Panel B) by MSA. While there is more time-series

variation in the regional inventor network measures, the majority of variation over our sample

period occurs across space. In terms of overall patent intensity, for example, roughly 80% of the

total observed variation between 1990 and 2018 is cross-sectional. This variation also indicates that

even as some metro areas have become more (or less) innovative in the past 30 years, the relative

ranking of most MSAs has been very stable.

[Insert Figure 1 here]

The link between patent intensity and inventor network density is also weaker than one might

expect. While some MSAs, such as San Jose-Sunnyvale-Santa Clara, CA, and Burlington-South

Burlington, VT, rank very high (top 10) in terms of both patent and network density, the simple

correlation between these two metrics is just 0.52. Ann Arbor, MI, and Ames, IA, for example, are

among the top 10 most innovative regions based on intensity, yet both fall outside the top 100 when

it comes to collaboration. On the more extreme side, the Monroe, MI, and Greely, CO, MSAs are

roughly 50th in the nation in terms of innovation intensity and fall outside the top 300 in terms of

collaboration. Thus, these two metrics – innovation intensity and collaboration intensity – seem to

be capturing distinct aspects of innovation that may be important for resilience.

Using an instrumental variables strategy for identication, Breschi and Lenzi (2016) study 331

MSAs over a relatively short time period (1995-1999) and nd that MSAs with larger average

inventor networks have higher rates of patented innovation. Similarly, in a panel of 355 MSAs

from 2003-2014, Bennett et al. (2021) nd that metro areas with larger innovation networks have

signicantly more high-growth rms, dened as those growing at least 20% per year for at least 5

consecutive years. They argue that regional inventor networks facilitate the ow of new knowledge

and technologies to individuals, organizations, and, ultimately, to the entrepreneurs who create

new products and services.

In addition to the more conventional measures of innovation, we also explore how innovation

concentration (or diusion) is aected by local governance structure. Wagner and Pavlik (2020)

show that although overall rates of patented innovation may be similar across metro areas, the con-

centration of innovation, both in terms of technology classes and inventors, is often much dierent.
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Using the unique identiers for organizations and unaliated individuals in the raw patent data,

we construct four distinct Herndahl-Hirschman indices (HHI) to measure innovation concentra-

tion. The rst two measures reect the concentration of innovation across inventors, using each

organization’s (or individual’s) share of the total patents awarded to their respective group.

The organization HHI measures treat each distinct organization as the unit of interest and

ignores the number of inventors. Hence, if three organizations are each awarded one patent in MSA j

in time t, the organization concentration HHI would be equal to 3,267 because each organization was

responsible for generating one-third of the region’s patents awarded to organizations. A limitation

of this metric is that it excludes innovation from (unaliated) inventors who do not work for

organizations. To address this issue, we also construct the HHI measures using the number of

distinct inventors and ignore the number of organizations. For example, suppose that four inventors

were awarded one patent in MSA j in time t. The inventor concentration HHI would be equal to

2,500 because each inventor was responsible for one-fourth of the region’s innovation.

The second concentration metric is based on the primary technology class listed on the patent

(the international patent classication or IPC) to assess the concentration of innovation. There

are approximately 130 dierent IPC codes, and we refer to these HHI measures as organization

production concentration and individual product concentration. If all the patents awarded to

(organization or individual) inventors in MSA j have the same primary technology class, then the

HHI value for this metric would equal 10,000.

From a resilience perspective, it is natural to expect a region with less concentrated (or more

diuse) innovation to be more resilient to economic disruptions. As a simple illustration, Baltimore,

MD, and Bloomington, IN, are two metro areas that have nearly identical patent intensity rates,

roughly 28 patents per 100,000 residents. (The national average is 26.) However, when one exam-

ines the concentration of innovation, the picture changes. In terms of product/technology classes

among patents generated by organizations (which generate a majority of the patents), Baltimore’s

average HHI is 738 and Bloomington’s is 4845. This means the range of products and services being

created in Baltimore is more than 6 times as diverse as the range of products and services being

created in Bloomington. Based on previous research (Balland et al. 2015), one would expect Bal-

timore’s greater inclusive innovation to enhance the region’s resilience to economic shocks relative

to Bloomington, other factors constant.
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Figure 2 plots the distribution of innovation concentration for the MSAs in our sample. Values

in the gure reect the annual average over the period from 1990 to 2018. Much like patent

intensity, innovation concentration is much more likely to vary across regions than it is to vary over

time, potentially reecting persistent, deep-rooted expertise among organizations and technologies.

[Insert Figure 2 here]

The HHI measures are plotted ranking MSAs from least concentrated innovation (rank = 1) to

most concentrated innovation (rank = 362). The least and most concentrated MSAs are labeled in

each panel, along with MSAs at roughly the 34th and 68th percentiles. Among inventors (the two

left panels), the New York-Newark-Jersey City MSA has the least concentrated (most inclusive)

innovation among both organizations and unaliated individual inventors. In contrast, the Villages

MSA in Florida and Beckley, WV, have the most concentrated (least inclusive) inventor indices,

both in excess of 6,000. Innovation is fragile in these regions because so many of their patents come

from only a few inventors/organizations.

In general, the data suggest that innovation tends to be more inclusive (less concentrated) in

MSAs with higher rates of innovation. For instance, Silicon Valley, the San Jose-Sunnyvale-Santa

Clara, CA, has the highest rate of patent intensity in the nation by a sizable margin and ranks

second in the nation in terms of the diversity of organizations receiving patents. There are, however,

some key exceptions. The Rochester, MN, metro area ranks 11th in the nation (in our sample) in

terms of overall patent intensity, yet the region is in the 70% percentile in terms of the diversity of

products and services being created. Similarly, the Carson City, NV, metro area ranks 56th in the

nation in terms of intensity, and 224th in terms of diversity of organizational inventors. This last

is because 20% of the region’s patents have been awarded to only two rms, International Gaming

Technology and General Electric.

3.2 Governance Measures

We rely upon the Census Bureau’s quinquennial Census of Governments to construct our meas-

ures of local government fragmentation. The Census of Governments is completed every 5 years

(ending in 2 and 7) and covers the universe of governments. There are roughly 90,000 dierent

governmental units, according to the Census Bureau. Table 1 shows the counts, by type, for 1992,

2007, and 2017. State and federal governmental units are omitted.
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[Insert Table 1 here]

As noted by Jimenez and Hendrick (2010), the growth in governmental units has been fueled

almost exclusively by expansions in special districts. Over our sample period, the number of special-

district governments expanded by more than 5,100 (or 16%). The total number of governmental

units has increased at a slower rate, primarily due to a trend in school district consolidation that

dates to the 1960s. In 1967, for example, there were roughly the same number of school districts

(21,264) as special districts (21,782). The shift toward special districts has been fairly widespread

geographically and by function. For instance, if one decomposes the variation in general-purpose

or special-purpose governments (including school districts) at the MSA level, more than 95% of

the variation is spatial rather than temporal. In terms of function, the highest share of new special

districts (between 1992 and 2017) have been for water services (16%), re protection (15%), housing

(8%), conservation (7%), and economic development (4%).4

We construct measures of both vertical and horizontal governmental fragmentation that follow

from the literature (Lee and Wang 2020; Goodman 2019; Grassmueck and Shields 2010). Horizontal

fragmentation attempts to capture the eect of having overlapping layers of responsibility in a given

area. It is the number of general-purpose governments (counties, townships, and municipalities)

per 100,000 residents. In contrast, the term vertical fragmentation has come to mean how dispersed

government responsibilities are shared across dierent governmental units. The standard approach

in the literature, which we follow, measures vertical fragmentation as the number of special districts

and school districts in an MSA per 100,000 residents. As noted by Goodman (2019), much of the

recent attention to polycentric governance has focused on vertical fragmentation because of the

negative development consequences associated with a greater concentration of these governmental

units.

In addition to the rate of governmental units, fragmentation is also evaluated using the distri-

bution of expenditures. As Lee and Wang (2020) note, areas where few local governments bear

most functional responsibilities are likely to be dierent from areas where service provision is shared

4The Census Bureau’s Annual Survey of Government Finance relies on a much smaller sample of governments.
For instance, the 2001 annual survey sampled 19,685 governments, of which 68.5% were school districts, 14.6%
were special districts, 6.9% were counties, 5.9% were cities, and 3.6% were townships. Because the annual surveys
signicantly over-represent school districts and under-represent special districts, relying on their data to measure
fragmentation would likely be misleading. The survey methodology for the Census of Governments may be found here:
https://www.census.gov/programs-surveys/cog/technical-documentation/methodology.html [accessed: 11/2/2021]
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more equally. The variable horizontal scal fragmentation is the Herndahl-Hirschman index of

the squared shares of direct governmental expenditures covered by the region’s general-purpose

governments. Similarly, vertical scal fragmentation is the sum of the squared shares of direct

governmental expenditures undertaken by the MSA’s school and special-district governments. In

both instances, larger values indicate more concentrated government spending (more scal central-

ization).

3.3 Identication Strategy

Given our interest in exploring if observable dierences in local governance structure explain

the spatial distribution of innovation across dierent metro areas, we exploit the cross-sectional

variation in the data by estimating a between regression. Specically, our empirical regression has

the form:

Īj,s = α+ ηX̄j,s + Ḡj,s + µs + ̄j,s, (2)

where Īj,s denotes the (mean) innovation measure of interest for metropolitan area j located in state

s. X̄j,s denotes a vector of control variables for metropolitan area j located in state s that previous

research suggests could be correlated with patented innovation. Our parameter of interest, Ḡj,s

denotes our governance metric of interest (outlined in Section 3.2). We also include state-specic

xed eects (µs) to adjust for factors such as dierences in non-compete enforcement and state tax

policies related to innovation. Multi-state metro areas are assigned to the state where the most

populous county is located. Finally, ̄j,s denotes the random disturbance term.

The between estimator regresses the average value of our innovation outcome of interest on the

individual averages of the governance measures, state xed eects, and our control variables. This

specication eliminates the time-series variation in the data so that the estimated coecients are

identied using only the cross-sectional variation. This also allows one to overcome the challenges

that arise because metro area patent intensity, concentration, and governance are so persistent over

time (recall that 95% of the total variation in our metro fragmentation measures is cross-sectional).5

Several recent studies on metro area patented innovation, including Wagner and Pavlik (2020) and

5If one were to use a two-way xed eects framework, the inclusion of MSA-specic xed eects would remove all
the cross-sectional variation in the data. In this case, the coecients would be identied from within-MSA variation
over time.
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Breschi and Lenzi (2016), follow the same estimation strategy.

Our full sample of (annual) data covers the period 1990 to 2018. Since the Census of Govern-

ments is available every ve years, the fragmentation measures use data from the 1992, 1997, 2002,

2007, 2012, and 2017 censuses. Except for a few covariates, we estimate equation (2) using each

MSA’s annual average values from 1990 to 2018. This is roughly three decades, so our estimated

coecients can be interpreted as reecting some long-run cross-sectional eect.

To adjust for observable dierences in innovation, we include a broad set of control variables in

X̄j,s. Following Carlino et al. (2007), we include each MSA’s Herndahl-Hirschman index of private

sector employment (HHI employment) constructed from the Quarterly Census of Employment and

Wages. The variable is scaled in thousands, and smaller values indicate a more diverse economy

(at least based on the distribution of payroll jobs). Descriptive statistics, years of coverage used

to construct the MSA averages, and the sources for all of our empirical variables are provided in

Table 2. Our full sample covers 362 MSAs.

[Insert Table 2 here]

Prior work has shown that access to capital is important for innovation and patents (Mann

and Sager 2007). To capture research funding and access to capital, we include real per capita

university R&D spending (in thousands) and real per capita venture capital spending in the region.

The regression also includes the share of jobs in STEM elds (science, technology, engineering,

and math) because these occupations are a key driver of innovation (Shambaugh et al. 2017). We

follow Wagner and Pavlik (2020) and form this variable using the Census Bureau’s denition of

STEM occupations, along with the industry-occupation crosswalk le created by the Bureau of

Labor Statistics. The crosswalk le provides estimates (based on national data) of the percentage

of specic occupations in a given industry, which allows one to estimate the number of jobs in a

specic occupation or set of occupations.6 These 63 occupations are then mapped to employment

levels in a given North American Industry Classication System (NAICS) sector using the national

industry-occupation matrix created by the BLS.7

6The Census Bureau’s denition of STEM occupations are available at the following URL:
¡https://www2.census.gov/programs-surveys/demo/guidance/industry-occupation/stem-census-2010-occ-code-
list.xls¿ [Accessed: 12/8/2018].

7The BLS industry-occupation crosswalks by industry are available at the following URL:
¡https://www.bls.gov/emp/tables/industry-occupation-matrix-industry.htm¿ [Accessed: 12/8/2018].
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In addition to STEM jobs, several variables are included to adjust for a metro area’s economic

development and dynamism. These include the MSA’s net job creation rate, per capita GDP (in

thousands of real dollars), and economic freedom index, as well as a measure of the human capital

stock. We rely on the region’s net job creation rate, from the Census Bureau’s Business Dynamic

Statistics database, to measure dynamism in the MSA. Since educational attainment has been

shown to be a strong driver of innovation (Shambaugh et al. 2017), we include the percentage

of adults ages 25 and older who hold college degrees as a control variable. The level of real per

capita GDP will adjust for dierences in economic development across regions, while the MSA’s

economic freedom index (Stansel 2019) will adjust for institutional dierences that could foster

innovation and bolster resilience. Economic freedom has been found to be positively related to

income, entrepreneurship, and more diuse innovation (Hall and Lawson 2014; Wagner and Pavlik

2020).8

There are also factors that could be correlated with innovation, or innovation concentration, such

as a region’s climate (for agricultural-related patents) or age. Newer MSAs may be disadvantaged

relative to older metro areas if innovation is entrenched in historic evolution. The regressions include

several variables to control for these eects. To adjust for potential entrenchment, we include the

total number of patents awarded to an MSA between 1790 and 1910, and the median annual

patent rate over this same period. We also include an MSA’s average patent rate (from 1990-2018)

for agricultural-related patents and health care patents. Health care-related patents often have

more co-inventors, which could aect the network measures, while agricultural innovation may be

dependent on local climate conditions and therefore be regional-specic.9

Knowledge diusion and spillovers also play critical roles in fostering innovation (Breschi and

Lenzi 2016; Anselin et al. 1997; Acs et al. 2002). We adjust for these factors using three dierent

control variables. First, we include the number of jobs (in millions) in the MSA that are export-

based to control for direct economic linkages to other areas. Second, we include each MSA’s average

population-weighted distance to every other MSA. This will adjust for the unobservable factors

aecting innovation that are correlated with proximity to more people and potential inventors.

8The economic freedom index varies from 0 (least free) to 10 (most free) and is the average of scores given to
three broad areas of governance: (1) spending; (2) taxation; and (3) labor market freedom. See Stansel (2019) for
more details.

9Using the NBER patent subcategories, agricultural patents are category 11 and health care patents are categories
31 and 32.
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Finally, we follow Breschi and Lenzi (2016) and include a measure of the size and interconnectedness

of inventors within an MSA with inventors in other MSAs. This variable is analogous to our regional

inventor network measure, except that it is based on the average geodesic distance between every

inventor in MSA j and every inventor outside of MSA j. This variable is also bounded by 0 and w,

where 0 indicates that no inventor in an MSA collaborated with any inventor outside the region,

and w indicates that every inventor in the region collaborated with every inventor outside of it.

This variable will help to capture the average spatial pattern of knowledge ows across metro areas.

Breschi and Lenzi (2016) also nd that larger metro areas have higher rates of patent intensity.

We include two variables to adjust for size dierences across MSAs. The rst is the region’s total

population (in millions), and the second is the percentage of the region’s total population living in

the largest county. This will account for dierences in the relative size of a region’s urban core.

Finally, due to the potential for simultaneity between local governance and innovation, we

follow Wagner and Pavlik (2020) and Breschi and Lenzi (2016) and rely upon an instrumental

variables strategy for identication. Since institutions like governance structure evolve slowly while

innovation happens and spreads rapidly, we instrument for the average value of each governance

measure (formed using data from 1992 to 2017) using the value from 1972.10 We also include a

second instrument for each governance measure, the MSA’s Herndahl-Hirschman index of church

denominations, based on data from the 1952 Survey of Churches and Church Membership.11 The

HHI for church denominations provides a metric reecting the diversity of religious preferences in

the community. If these preferences are persistent over time, which seems reasonable, then we would

expect the diversity of churches in 1952 to be correlated with fragmentation of local governance in

subsequent generations. Results of the rst-stage regressions are shown in Appendix Table A.1.

Valid instruments must also satisfy the exclusion restriction. We argue that governance struc-

ture from 20 years in the past coupled with the region’s diversity of churches 40 years in the past

will be unrelated to current innovation because the inventors and ideas are, for all practical pur-

poses, unrelated. For instance, Wagner and Pavlik (2020) note that the median inventor is awarded

one patent, and that fewer than 2% of inventors in the U.S. have ever been awarded patents 20

10The Census of Governments provides counts of the number of governmental units, by county, dating back to
1942. However, the rst year that detailed nancial data are provided by governmental unit is 1972.

11The number of churches by denomination is provided at the county level in the Survey of Churches and Church
Membership. All the empirical variables used in this paper, including our HHI church measure, use the 2015 MSA
denitions from the Oce of Management and Budget when aggregating county-level data is required.
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years apart. Additionally, Mehta et al. (2010) examined the citation age prole of patents and

found that frequency of citation peaks one year after a patent is awarded and falls to a number

statistically indistinguishable from zero 15 years afterward. Based on this evidence, we believe we

are justied in assuming that current patented innovation is unrelated either to a community’s

historical religious diversity or to its local governance structure a generation ago.

4 Empirical Results

The instrumental variables results are presented in Tables 3 through Table 6. Each regression

includes an unreported constant term and state xed eects. Standard errors are clustered at the

state-level. The Cragg-Donald F-statistic for the strength of the instruments is reported, along with

the p-value from the Sargan over-identication test statistic for the exogeneity of the instruments.

Finally, each regression also reports the p-value from a Moran’s I test for residual spatial correlation

using an inverse distancing weighting matrix. We nd no evidence of signicant residual spatial

correlation in any of the regressions (p ≤ 0.05), suggesting that the across-MSA inventor network

measure and weighted population distance variable are suciently controlling for spatial spillovers

between MSAs.

For each outcome variable, we estimate ve separate regressions: one with each of the four

governance fragmentation measures included separately as a regressor, and one regression includ-

ing all four governance variables simultaneously. The rst-stage F-statistic for the strength of the

instruments is 3965.0 for horizontal fragmentation, 327.0 for vertical fragmentation, 43.5 for ho-

rizontal scal dispersion, and 143.6 for vertical scal dispersion. These values easily surpass the

latest threshold guidance from Andrews et al. (2019) regarding weak instruments. Finally, it is

worth noting that in the 35 regressions shown in Tables 3 through 6 we never observe a p-value

from the over-identication test that is below 0.10. Hence, at least empirically, the instruments are

both strong and exogenous.

Focusing on the regional inventor work (Table 3), we nd that larger MSAs, MSAs with more

STEM jobs, and those with greater economic freedom have larger average inventor networks. We

also nd that MSAs with inventors who collaborate more with inventors from other MSAs have

larger local networks. MSAs with larger urban cores, and those closer to other large MSAs (based

on population), have signicantly smaller regional inventor networks.
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[Insert Table 3 here]

In terms of the governance metrics, we nd little consistent evidence that the size of an MSA’s

average regional inventor network is dependent on local governance structure. Column (2) in Table

3 indicates that the presence of more special-district governments (per 100,000 residents) lowers

the size of a region’s inventor network. However, this nding is fragile because it does not hold

when all the governance metrics are included in the same regression (column 5).

Regression results of the patent intensity rate are shown in Table 4. There are 10 total columns,

the rst 5 of which apply to the rate of patents among organizational inventors, and the last to the

patent rate among unaliated individual inventors. Recall from Section 3.1 that organizational

inventors make up roughly two-thirds of the inventor pool and generate around 85% of total patent

awards.

[Insert Table 4 here]

Consistent with prior literature, the results in Table 4 show that metro areas with a larger share

of STEM occupations, more export-based jobs, higher economic freedom, and larger university R&D

expenditures have higher rates of patented innovation. After adjusting for these observable factors,

the results in Table 4 indicate that fragmentation of local governance does not signicantly aect

the rate of patented innovation among either organizations or individuals.

Our innovation concentration results are presented in Tables 5 and 6. The outcome variables

for Table 5 measure the concentration (or diusion) of innovation among distinct organizations

and individuals, while Table 6 shows the results for innovation concentration among product (or

technology) classes for organizations and unaliated individuals.

[Insert Table 5 here]

[Insert Table 6 here]

Regarding the control variables, we nd consistent evidence that MSAs with a higher share

of STEM jobs, greater economic freedom, and more per capita university R&D expenditures have

signicantly less concentrated (more inclusive) innovation, both in terms of distinct inventors (Table

5) and inventions (Table 6). We nd that innovation is more concentrated, again both in terms of
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inventors and inventions, in metro areas where a greater share of the population is in the urban

core, in metro areas that are more economically concentrated (in terms of jobs), and in places where

regional inventors collaborate more often with inventors outside the region.

These results point to consistent evidence that local governance aects the concentration of

innovation. Based upon columns (5) and (10) in Tables 5 and 6, we nd that a higher number

of special-purpose governments (per 100,000 residents) signicantly increases the concentration of

innovation for organizations and individuals. In terms of distinct inventors (Tables 5), our results

indicate that a one standard deviation increase in the number of special-purpose governments

increases the HHI concentration for organizations and individuals by 251 and 336, respectively.

This explains approximately 20 percent of the variation for the one standard deviation change in

the HHI concentration of inventors.

The magnitude is similar when we focus on the HHI concentration of products (Table 6).

The estimated coecients in columns (5) and (10) suggest that a one standard deviation increase

in the number of special-purpose governments raises the HHI for product concentration by 308

for organizations and 326 for individuals. This explains roughly 20 percent of the one standard

deviation change in the HHI concentration of products being created in metro areas.

The nding that a greater concentration of special-purpose governments reduces inclusive innov-

ation is consistent with the broader literature showing that population, employment, and home-

price growth are weaker in metro areas with more special-purpose governments (Lee and Wang

2020; Goodman 2020b; Stansel 2006). Considering all the results jointly, we nd that local gov-

ernance is unrelated to the level or rate of local innovation. However, in regions with more vertical

fragmentation – meaning there is more dispersion in responsibilities across governmental units –

we nd that innovation is more concentrated among who is inventing and what products are being

created.

4.1 A Closer Look at Inclusive Innovation and Special-Purpose Governments

In this section, we decompose the vertical fragmentation measure into the two major compon-

ents, special-district governments and school districts, to provide greater evidence on the mechan-

isms(s) underlying our baseline results. Because we only nd evidence linking a higher number of

special-purpose governments (per capita) to less inclusive innovation, we also limit our analysis to

20



outcome variables measuring the HHI of patent concentration among inventors and technologies.

As we did with the baseline empirical specication, we treat the number of special-district/school

districts (per 100,000 residents) as being endogenously determined with innovation. Instruments in-

clude the HHI of church denominations in the MSA in 1952 and the number of special-district/school

districts per 100,000 residents in 1972. For these regressions, the rst-stage F statistics are 292.2

(special-district governments) and 327.4 (school districts). The regression results are presented in

Tables 7 and 8.

[Insert Table 7 here]

[Insert Table 8 here]

The results from columns (3) and (6) in Tables 7 and 8 include both vertical fragmentation

metrics in the same regression. These specications strongly suggest that the concentration of school

districts rather than special-district governments is behind the nding that vertical fragmentation

is detrimental to inclusive innovation.

There are at least two potential mechanisms that could explain this result. First, metro areas

with greater governmental fragmentation have been shown to have higher than average levels of

total government spending and taxation. (Goodman 2019). The presence of more school districts,

typically funded by property taxes, might cause individuals and rms to divert resources to tax

bills and away from activities that drive innovation, thus making innovation less inclusive at the

margin. This explanation is similar in spirit to the study by Aghion et al. (2020), who nd that

French rms operating just below a certain regulatory threshold innovate signicantly more than

the rms operating just above it.

In addition, there is an established literature indicating that metro areas with more fragmen-

ted school districts tend to have less equitable distribution of school resources and educational

attainment (Holme and Finnigan 2013). This could mean a smaller pool of potential innovators

compared to areas with greater equality of educational opportunities, ultimately contributing to

an environment of less inclusive innovation.

Furthermore, local school district fragmentation can reduce diversity along racial and socio-

economic lines (Bischo 2008; Clotfelter 2004). This could reduce inclusive innovation through a
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reduction in the so-called diversity dividend due to reduced interactions between both adults and

children from dierent backgrounds (Syrett and Sepulveda 2011).

The literature on school district fragmentation is extensive, and our results suggest that more

work is needed to isolate the mechanisms at work. As noted above, more districts might lead to

greater competition for the same tax base, which in turn could hinder learning outcomes. Altern-

atively, there is a growing body of work linking diversity (broadly dened) to greater innovation

and entrepreneurship (Karlsson et al. 2021). If greater school district segregation is being driven

by racial division, then, if results from business organizations extend to the broader population,

this could lead to less innovation, as our results suggest.

5 Conclusion and Policy Discussion

Economic and natural disasters have led both policymakers and scholars to explore ways that

regions can recover and adapt. The extant literature has looked at how regions organize their

governance structures to inuence economic development and how innovation can shape economic

resilience. However, to the best of our knowledge, there has not been scholarship linking the

structure of a region’s municipal governance to innovative capacity and inclusiveness.

There are a variety of mechanisms through which decentralization or consolidation of regional

governance may impede or promote innovative activity. For instance, those who promote polycentric

local governance, in the vein of Ostrom et al. (1961), point to competition among governments

yielding greater local economic freedom and services that meet the needs of local entrepreneurs

and innovators. We note, however, that decentralized governance does not come without potential

negatives like barriers to collaboration across governmental units, the attempt to pick winners,

and the potential for rent-seeking by innovative rms.

Meanwhile, those who advocate municipal consolidation argue it allows for greater policy co-

ordination and capacity, among other benets. Here again, we note potential negatives: an expan-

ded regulatory regime, public corruption, and regulatory capture by innovative rms that proves

harmful to the broader innovation ecosystem.

Apparently, a multitude of mechanisms are at play. These lead us to examine empirically the

role local governance structure plays in fostering several measures of innovation in U.S. metro areas.

We focus on the variation across metro areas, identifying the impact using an instrumental variable
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strategy with lagged measures of municipal governance structure. Our results show no compel-

ling evidence that the regional governance structure aects innovation rates either for rms or for

unaliated individuals. However, we do nd consistent evidence that local governance aects the

concentration of innovation in a region. In particular, we estimate a robust relationship between

vertical fragmentation (i.e. a higher number of special-district governmental units) and concen-

tration of innovation for organizations and individuals, holding other measures of local governance

constant. For instance, our results indicate that a one standard deviation increase in the number

of special-district governments increases the HHI concentration for organizations and individuals

by 251 and 336, respectively. This explains approximately 20 percent of a one standard deviation

change in the HHI concentration of inventors.

In particular, our results show that the number of school districts per 100,000 residents (rather

than the number of special districts overall) drives the nding that governmental fragmentation

leads to less inclusive innovation. This result is unexpected, considering that over time, school

districts have been consolidating while other forms of special purpose governments have been ex-

panding. We oer two potential channels to explain this result. First, when school district frag-

mentation increases delivery costs, innovators may divert resources away from innovation to pay

local tax bills. Second, if school district fragmentation results in greater inequality in delivery

and student outcomes, this inequality could reduce the region’s pool of potential local innovators.

Both mechanisms could lead to less inclusive regional innovation, making local communities more

vulnerable to economic disruptions.
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Table 1: Number of Local Governments in the U.S.

Type 1992 2007 2017 %∆
1992-2017

County 3,043 3,032 3,025 -0.6
Municipality 19,285 19,489 19,426 0.7
Township 16,656 16,475 16,173 -2.9
Special District 31,555 35,566 36,694 16.3
School District 14,422 13,742 13,448 -6.8

Source: Census of Governments, U.S. Census Bureaus. Counts in-
clude only subnational governments. The Census Bureau denes
special-purpose governments as the sum of special districts and
school districts.
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Figure 1: Patent Intensity and Innovation Networks by MSA: Average 1990-2018
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Figure 2: Inventor and Product Innovation Concentration by MSA: Average 1990-2018
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Table 2: Descriptive Statistics and Data Sources

Variable Mean Std Deviation Years of Coverage

regional inventor network 1.259 1.655 1990-2018
organization patent rate 22.628 32.778 1990-2018
individual patent rate 3.588 2.118 1990-2018
organization concentration 962.388 1272.269 1990-2018
individual concentration 2181.349 1723.456 1990-2018
organization product concentration 1777.298 1162.772 1990-2018
individual product concentration 2692.449 1671.846 1990-2018

horizontal fragmentation 11.840 12.360 1992-2017
vertical fragmentation 17.325 15.221 1992-2017
horizontal scal dispersion 31.681 10.514 1992-2017
vertical scal dispersion 0.361 0.151 1992-2017

share of jobs in STEM occupations 2.718 0.903 1990-2018
economic freedom: overall 6.533 0.726 1992-2017
venture capital per capita 0.296 0.773 1990-2018
percent 25 and older with degree 18.565 8.539 2005-2007
per capita university r & d spending 0.066 0.194 1990-2018
across-MSA inventor network 0.192 0.438 1990-2018
net job creation rate 1.330 0.960 1990-2018
HHI employment 1.104 0.260 1990-2018
export jobs 3.953 1.525 2003-2007
population (millions) 0.610 1.396 1990-2018
largest county population share 79.327 22.008 1990-2018
real per capita GDP 16.945 4.985 1990-2018
weighted population distance 426.741 138.898 1990-2018
historical patent rate 3.363 3.497 1790-1910
historical patent sum (000s) 2.024 9.684 1790-1910
agricultural patent rate 0.059 0.175 1990-2018
health care patent rate 2.076 3.607 1990-2018

Notes: The full sample includes 362 metropolitan statistical areas (MSAs). Years of coverage indicates
the number of years used to construct the average of each MSA’s variable of interest. All dollar variables
were converted into real terms using the CPI (2018 = 100). Regional innovation network, across-MSA
inventor network, patent rates (per 100,000 residents), and innovation concentration measures were con-
structed using data from the PatentsView project. MSA economic freedom is from the Fraser Institute
and is available in economic census years (ending in 2 or 7). The horizontal/vertical fragmentation
and dispersion variables were constructed from the Census Bureau’s Census of Governments, which is
also available only in years ending in 2 or 7. The share of jobs in STEM occupations was constructed
from the Quarterly Census of Earnings and Wages. Net job creation rate is from the Census’s Business
Dynamic Statistics program. University r&d spending (in thousands) per capita is from the National
Science Foundation. Venture capital spending is from Dow Jones Venture Source. The percentage of
the population ages 25 and older with a graduate degree was constructed using data from IPUMS for
2005-2017. MSA employment in export industries is from the Brookings Institution. GDP data are
from the Bureau of Economic Analysis. MSA population data and the largest county’s share of total
population are from the Census Bureau. Distances between MSAs, used to construct the weighted
population distance variable, are based on the distance between the MSA’s most populated counties.
The Herfandahl-Hirschman Index of employment (in thousands) uses supersectors from the Quarterly
Census of Earnings and Wages data. Historial patent data were obtained from the HistPat Dataset,
version 8, available at Harvard’s Dataverse.
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Table 3: Regional Governance Structure and Inventor Networks

Dependent variable:
regional inventor network

(1) (2) (3) (4) (5)
2SLS 2SLS 2SLS 2SLS 2SLS

share of jobs in STEM occupations 0.470*** 0.486*** 0.541*** 0.532*** 0.448***
(0.140) (0.143) (0.139) (0.136) (0.139)

economic freedom: overall 0.493*** 0.454** 0.425** 0.478*** 0.381*
(0.179) (0.182) (0.204) (0.174) (0.199)

venture capital per capita -0.096 -0.105 -0.113* -0.118 -0.120
(0.070) (0.071) (0.067) (0.077) (0.076)

percent 25 and older with degree 0.011 0.008 0.008 0.011 0.010
(0.010) (0.010) (0.010) (0.010) (0.010)

per capita university r & d spending -0.719 -0.634 -0.672 -0.643 -0.751*
(0.445) (0.445) (0.430) (0.441) (0.424)

across-MSA inventor network 0.308* 0.304* 0.317* 0.294* 0.341*
(0.171) (0.175) (0.180) (0.176) (0.195)

net job creation rate 0.009 0.010 0.033 0.024 0.005
(0.087) (0.087) (0.090) (0.086) (0.087)

HHI employment -0.119 -0.166 -0.193 -0.155 -0.172
(0.275) (0.272) (0.277) (0.280) (0.274)

export jobs 0.051 0.049 0.025 0.028 0.050
(0.061) (0.064) (0.059) (0.065) (0.064)

population (millions) 0.229 0.218 0.241 0.231 0.175
(0.167) (0.164) (0.169) (0.162) (0.163)

largest county population share -0.013** -0.013*** -0.013** -0.010* -0.008
(0.005) (0.005) (0.005) (0.006) (0.005)

real per capita GDP -0.016 -0.016 -0.015 -0.015 -0.008
(0.018) (0.018) (0.018) (0.018) (0.017)

weighted population distance -0.003*** -0.003*** -0.003** -0.003*** -0.003**
(0.001) (0.001) (0.001) (0.001) (0.001)

historical patent rate -0.014 -0.018 -0.021 -0.021 -0.007
(0.022) (0.020) (0.020) (0.019) (0.022)

historical patent sum (000s) 0.003 0.005 0.002 0.007 0.010
(0.023) (0.023) (0.023) (0.022) (0.023)

agricultural patent rate 0.234 0.259 0.234 0.253 0.225
(0.451) (0.457) (0.459) (0.446) (0.466)

health care patent rate 0.078** 0.078** 0.079** 0.077** 0.075**
(0.036) (0.035) (0.035) (0.035) (0.035)

horizontal fragmentation -0.017* -0.013
(0.010) (0.012)

vertical fragmentation -0.011** -0.007
(0.005) (0.007)

horizontal scal dispersion -0.021 -0.023
(0.022) (0.021)

vertical scal dispersion -0.597 -1.278*
(0.740) (0.704)

N 362 362 362 362 362
Adj. R2 0.631 0.628 0.621 0.627 0.623
IV Sargan P 0.501 0.451 0.462 0.438 0.691
Cragg-Donald F-stat 3965.035 327.017 43.465 143.590
Moran’s I p-value 0.067 0.071 0.063 0.067 0.088

This table presents the eect of various measures of regional governance fragmentation on the a region’s (within-
MSA) regional innovation network. Every governance fragmentation variable is treated as endogenous using the
region’s Herfandahl-Hirschman index of church denominations from 1952 and the endogenous variable’s value from
1972 as instruments. The row ’Cragg-Donald F-statistic’ denotes the rst-stage F statistic for the strength of the
instruments. The row ’IV Sargan’ shows the p-value from the Sargan test under the null hypothesis that at least
one of the instruments is uncorrelated with the error term. The row ’Moran’s I p-value’ reports the p-value of
residual spatial correlation using an inverse distance weighting matrix. Standard errors are in parantheses and are
clustered at the state dimension. *** denotes signicance at the 1 percent level, ** at the 5 percent level, and *
at the 10 percent level. Models were estimated with a constant term and state xed eects that are not reported.
Most variables are the average over the period from 1990 to 2018. See the notes to Table 1 for exceptions, variable
denitions, and sources.
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Table 4: Regional Governance Structure and Innovation Rates

Dependent variable:
organization patent rate individual patent rate

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
2SLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS

share of jobs in STEM occupations 12.933*** 11.394** 11.798*** 11.717*** 11.996** 0.627*** 0.554*** 0.552*** 0.548*** 0.621***
(4.909) (4.569) (4.446) (4.332) (4.784) (0.169) (0.162) (0.153) (0.152) (0.183)

economic freedom: overall 11.350*** 11.131*** 12.078*** 11.187*** 10.956*** 0.985*** 0.995*** 0.919*** 0.991*** 0.869***
(3.358) (3.313) (3.623) (3.290) (3.709) (0.323) (0.332) (0.356) (0.316) (0.324)

venture capital per capita 1.303 1.551 1.552 1.291 1.214 0.406*** 0.421*** 0.417*** 0.421*** 0.395***
(3.869) (3.841) (3.893) (4.006) (4.018) (0.125) (0.128) (0.127) (0.135) (0.129)

percent 25 and older with degree -0.147 -0.145 -0.110 -0.105 -0.160 -0.011 -0.010 -0.012 -0.010 -0.015
(0.198) (0.196) (0.209) (0.204) (0.226) (0.014) (0.014) (0.016) (0.015) (0.017)

per capita university r & d spending 13.146 11.808 12.153 11.621 13.943 0.894 0.795 0.754 0.795 0.877
(12.281) (12.252) (12.576) (12.266) (12.792) (0.607) (0.610) (0.577) (0.617) (0.583)

across-MSA inventor network 7.215** 7.565** 7.217** 7.509** 7.176** -0.335 -0.318 -0.288 -0.316 -0.299
(3.186) (3.354) (3.459) (3.436) (3.589) (0.229) (0.235) (0.244) (0.234) (0.230)

net job creation rate -0.562 -0.993 -0.916 -0.898 -0.950 -0.089 -0.108 -0.102 -0.109 -0.085
(2.124) (2.190) (2.218) (2.221) (2.099) (0.120) (0.122) (0.121) (0.122) (0.117)

HHI employment -11.854** -11.335** -10.863* -11.228* -11.947** 0.047 0.092 0.048 0.091 -0.025
(5.637) (5.660) (5.772) (5.788) (5.419) (0.292) (0.299) (0.318) (0.298) (0.319)

export jobs 4.244*** 4.759*** 4.640*** 4.554*** 4.587*** -0.073 -0.050 -0.053 -0.048 -0.075
(1.234) (1.132) (1.133) (1.159) (1.305) (0.056) (0.059) (0.056) (0.054) (0.063)

population (millions) -1.590 -2.142 -1.829 -2.278 -2.356 0.128* 0.109 0.099 0.105 0.100
(1.460) (1.564) (1.556) (1.772) (1.903) (0.075) (0.073) (0.070) (0.087) (0.091)

largest county population share 0.090 0.072 0.081 0.137 0.119 0.010** 0.009** 0.009** 0.010 0.011
(0.069) (0.066) (0.066) (0.101) (0.107) (0.004) (0.004) (0.004) (0.008) (0.008)

real per capita GDP -0.126 -0.103 -0.133 -0.050 -0.097 0.017 0.018 0.020 0.018 0.021
(0.583) (0.580) (0.594) (0.609) (0.614) (0.020) (0.020) (0.019) (0.022) (0.021)

weighted population distance -0.014 -0.019 -0.020 -0.018 -0.016 0.000 0.000 0.000 0.000 0.000
(0.021) (0.021) (0.022) (0.022) (0.022) (0.002) (0.002) (0.002) (0.002) (0.002)

historical patent rate -0.947* -0.767* -0.829* -0.759 -0.864* -0.101** -0.092** -0.089** -0.091** -0.097**
(0.487) (0.461) (0.450) (0.467) (0.518) (0.041) (0.041) (0.037) (0.044) (0.044)

historical patent sum (000s) -0.063 -0.062 -0.056 0.006 0.044 -0.008 -0.009 -0.011 -0.009 -0.008
(0.192) (0.200) (0.211) (0.224) (0.236) (0.009) (0.009) (0.011) (0.014) (0.015)

agricultural patent rate -3.397 -3.631 -3.500 -3.668 -2.932 0.020 -0.002 -0.023 -0.001 0.007
(7.520) (7.875) (7.678) (7.710) (7.469) (0.398) (0.412) (0.440) (0.412) (0.426)

health care patent rate 4.164*** 4.143*** 4.149*** 4.118*** 4.132*** 0.183*** 0.182*** 0.182*** 0.182*** 0.182***
(1.192) (1.209) (1.216) (1.199) (1.145) (0.059) (0.061) (0.061) (0.061) (0.058)

horizontal fragmentation 0.272 0.371 0.020* 0.026*
(0.217) (0.245) (0.010) (0.013)

vertical fragmentation -0.097 -0.266* 0.001 -0.008
(0.103) (0.144) (0.009) (0.010)

horizontal scal dispersion 0.219 0.209 -0.025 -0.029
(0.381) (0.466) (0.050) (0.050)

vertical scal dispersion -14.620 -9.664 -0.036 -0.251
(15.925) (18.105) (1.818) (1.611)

N 362 362 362 362 362 362 362 362 362 362
Adj. R2 0.667 0.665 0.663 0.662 0.661 0.636 0.633 0.633 0.632 0.631
IV Sargan P 0.091 0.138 0.113 0.152 0.100 0.191 0.254 0.296 0.257 0.233
Cragg-Donald F-stat 3965.035 327.017 43.465 143.590 3965.035 327.017 43.465 143.590
Moran’s I p-value 0.390 0.353 0.439 0.333 0.324 0.570 0.614 0.691 0.609 0.617

This table presents the eect of various measures of regional governance fragmentation on a region’s rate of patented innovation (per 100,000 residents). Every governance fragmentation
variable is treated as endogenous using the region’s Herfandahl-Hirschman index of church denominations from 1952 and the endogenous variable’s value from 1972 as instruments. The
row ’Cragg-Donald F-statistic’ denotes the rst-stage F statistic for the strength of the instruments. The row ’IV Sargan’ shows the p-value from the Sargan test under the null hypothesis
that at least one of the instruments is uncorrelated with the error term. The row ’Moran’s I p-value’ reports the p-value of residual spatial correlation using an inverse distance weighting
matrix. Standard errors are in parantheses and are clustered at the state dimension. *** denotes signicance at the 1 percent level, ** at the 5 percent level, and * at the 10 percent
level. Models were estimated with a constant term and state xed eects that are not reported. Most variables are the average over the period from 1990 to 2018. See the notes to Table
1 for exceptions, variable denitions, and sources.
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Table 5: Regional Governance Structure and Innovation Concentration: Inventors

Dependent variable:
organization concentration individual concentration

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
2SLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS

share of jobs in STEM occupations -468.340*** -446.641*** -533.749*** -527.927*** -414.242*** -892.045*** -875.981*** -1009.927*** -1001.308*** -833.930***
(76.556) (73.467) (74.133) (75.638) (77.783) (116.771) (110.116) (118.929) (117.877) (116.750)

economic freedom: overall -560.183*** -497.966*** -525.715*** -547.320*** -479.047*** -536.363*** -442.410*** -415.286** -524.382*** -357.137*
(142.141) (128.070) (156.773) (137.191) (147.043) (161.783) (164.854) (189.794) (164.648) (191.508)

venture capital per capita 33.779 39.133 47.815 53.666 48.842 -2.284 8.849 25.766 22.788 23.700
(45.393) (54.336) (52.120) (56.385) (58.717) (86.066) (104.511) (98.312) (104.386) (111.998)

percent 25 and older with degree -6.354 -2.417 -4.455 -6.206 -4.599 18.608* 24.731** 23.771** 19.944* 23.251**
(9.043) (9.086) (9.346) (9.123) (9.707) (10.390) (9.646) (9.324) (10.460) (9.892)

per capita university r & d spending -461.049* -544.310** -523.148** -534.458** -483.258* -1630.749*** -1775.112*** -1704.762*** -1766.118*** -1632.928***
(250.931) (258.469) (241.135) (229.805) (255.077) (368.228) (380.408) (330.466) (327.620) (368.601)

across-MSA inventor network 1520.164*** 1516.262*** 1523.276*** 1533.495*** 1503.140*** 885.282*** 883.225*** 867.093*** 910.307*** 837.563***
(511.991) (502.416) (507.026) (504.592) (488.774) (319.312) (305.051) (319.573) (315.469) (297.780)

net job creation rate -77.895 -66.798 -97.670 -92.922 -58.762 -198.170** -185.897** -239.028*** -226.535*** -182.528**
(71.184) (67.801) (74.742) (70.518) (67.027) (80.435) (78.234) (81.938) (78.443) (78.001)

HHI employment 602.448*** 655.148*** 655.412*** 637.252*** 639.695*** 702.079** 789.712*** 830.480*** 763.616*** 798.749***
(208.599) (217.510) (216.436) (211.859) (200.494) (292.346) (304.261) (299.112) (296.079) (277.088)

export jobs -4.713 -16.128 17.698 16.981 -20.130 206.530*** 194.714*** 249.938*** 242.683*** 193.998***
(35.756) (33.166) (34.218) (35.366) (36.218) (51.203) (51.724) (54.533) (48.374) (55.331)

population (millions) -108.999** -78.803* -123.641** -113.563** -47.615 -236.651*** -196.142*** -256.142*** -261.288*** -150.593*
(51.111) (47.484) (50.880) (56.975) (53.087) (70.695) (67.734) (72.116) (75.446) (80.443)

largest county population share 8.253*** 8.741*** 7.714*** 5.603** 5.088* 21.822*** 22.380*** 21.122*** 19.733*** 17.804***
(2.489) (2.420) (2.369) (2.796) (2.990) (3.062) (2.616) (2.704) (4.137) (4.816)

real per capita GDP 14.244 13.953 14.110 13.191 9.163 13.745 13.557 11.272 14.478 4.554
(15.419) (14.960) (16.033) (16.767) (16.679) (22.576) (21.975) (23.843) (25.221) (25.593)

weighted population distance 0.177 0.097 -0.127 -0.074 0.130 1.940 1.763 1.254 1.532 1.663
(0.766) (0.724) (0.783) (0.770) (0.732) (1.240) (1.234) (1.423) (1.361) (1.270)

historical patent rate -1.728 -2.027 5.330 4.518 -9.189 82.099*** 83.693*** 92.574*** 95.206*** 71.257**
(11.289) (10.490) (13.059) (12.718) (11.395) (26.865) (25.770) (27.714) (27.725) (28.142)

historical patent sum (000s) 14.332** 11.354 14.494* 10.968 6.927 31.357*** 26.750*** 33.293*** 28.943*** 23.319**
(7.272) (7.226) (7.411) (7.782) (8.252) (8.602) (8.787) (9.294) (9.503) (10.277)

agricultural patent rate -535.260*** -563.694*** -543.552*** -553.048*** -551.213*** -827.606*** -874.363*** -824.240*** -857.730*** -830.918***
(134.696) (171.117) (135.356) (129.903) (171.296) (235.680) (281.014) (259.521) (245.163) (285.300)

health care patent rate 1.949 2.264 1.080 2.140 4.725 3.300 3.544 1.804 2.268 6.879
(16.595) (18.339) (17.935) (18.265) (17.917) (25.130) (28.725) (28.195) (27.563) (28.438)

horizontal fragmentation 15.809** 8.599 27.617** 15.537
(7.685) (7.506) (13.500) (14.079)

vertical fragmentation 18.621** 16.545** 27.764*** 22.090**
(7.808) (7.687) (6.755) (9.060)

horizontal scal dispersion 10.093 3.938 38.227 29.045
(19.335) (21.084) (27.390) (31.793)

vertical scal dispersion 496.119 978.679 233.829 1299.267
(653.167) (654.632) (879.080) (1203.581)

N 362 362 362 362 362 362 362 362 362 362
Adj. R2 0.648 0.657 0.643 0.649 0.665 0.634 0.641 0.614 0.625 0.655
IV Sargan P 0.292 0.298 0.373 0.365 0.172 0.165 0.142 0.145 0.104 0.266
Cragg-Donald F-stat 3965.035 327.017 43.465 143.590 3965.035 327.017 43.465 143.590
Moran’s I p-value 0.350 0.452 0.312 0.368 0.431 0.127 0.191 0.128 0.174 0.145

This table presents the eect of various measures of regional governance fragmentation on the concentration (or diusion) of a region’s innovation among distinct inventors. The dependent variables are the Herfandahl-
Hirschman indices of concentration among distinct organizational or individual inventors. Larger values indicate more concentrated innovation. Every governance fragmentation variable is treated as endogenous using the
region’s Herfandahl-Hirschman index of church denominations from 1952 and the endogenous variable’s value from 1972 as instruments. The row ’Cragg-Donald F-statistic’ denotes the rst-stage F statistic for the strength
of the instruments. The row ’IV Sargan’ shows the p-value from the Sargan test under the null hypothesis that at least one of the instruments is uncorrelated with the error term. The row ’Moran’s I p-value’ reports the
p-value of residual spatial correlation using an inverse distance weighting matrix. Standard errors are in parantheses and are clustered at the state dimension. *** denotes signicance at the 1 percent level, ** at the 5 percent
level, and * at the 10 percent level. Models were estimated with a constant term and state xed eects that are not reported. Most variables are the average over the period from 1990 to 2018. See the notes to Table 1 for
exceptions, variable denitions, and sources.
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Table 6: Regional Governance Structure and Innovation Concentration: Products

Dependent variable:
organization product concentration individual product concentration

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

share of jobs in STEM occupations -426.526*** -390.624*** -493.490*** -487.625*** -367.364*** -829.690*** -820.712*** -954.891*** -947.751*** -770.099***
(72.339) (69.635) (74.595) (73.947) (71.005) (112.078) (108.466) (115.350) (115.599) (112.846)

economic freedom: overall -510.794*** -438.893*** -452.413*** -500.717*** -400.620*** -521.431*** -425.861*** -420.590** -509.316*** -372.271**
(135.683) (120.035) (145.571) (132.982) (140.888) (154.536) (159.821) (180.171) (158.731) (182.884)

venture capital per capita 14.967 19.179 30.416 32.302 30.846 -25.798 -13.130 2.697 0.478 -3.890
(55.612) (61.923) (59.552) (64.513) (63.807) (84.809) (104.474) (98.379) (103.417) (110.437)

percent 25 and older with degree -0.484 3.949 2.142 -0.046 2.652 19.809* 26.117*** 24.473*** 21.329** 23.744**
(8.358) (8.225) (8.623) (8.457) (8.936) (10.411) (9.619) (9.495) (10.469) (9.897)

per capita university r & d spending -543.212*** -627.358*** -591.940*** -618.689*** -569.825** -1532.962*** -1688.022*** -1629.412*** -1679.286*** -1546.093***
(210.566) (223.443) (208.877) (193.275) (223.042) (352.934) (359.914) (306.942) (312.657) (346.164)

across-MSA inventor network 1237.763*** 1230.767*** 1231.627*** 1251.587*** 1212.717*** 736.153** 735.750*** 728.037** 763.235*** 698.452**
(457.922) (445.392) (453.545) (452.714) (433.366) (292.138) (277.216) (291.871) (288.834) (272.163)

net job creation rate -140.135** -124.407* -162.424** -155.761** -120.223* -150.236** -139.726* -191.174** -180.943** -132.298*
(66.125) (63.975) (69.147) (65.845) (65.828) (74.897) (72.192) (76.653) (74.112) (71.303)

HHI employment 577.139*** 632.825*** 644.268*** 612.215*** 634.152*** 650.596** 743.286*** 771.460*** 716.926*** 729.555***
(182.223) (193.770) (190.132) (184.325) (178.512) (264.506) (276.908) (273.517) (270.993) (254.004)

export jobs 9.653 -7.051 33.779 30.926 -7.668 213.168*** 203.537*** 257.850*** 251.973*** 198.288***
(35.194) (35.478) (37.712) (35.275) (36.413) (54.849) (57.302) (59.420) (52.804) (59.223)

population (millions) -127.574*** -89.382** -139.863*** -136.618** -59.235 -264.153*** -225.190*** -288.102*** -291.938*** -184.740**
(47.665) (42.870) (49.464) (54.696) (46.655) (67.317) (63.948) (68.046) (72.571) (78.786)

largest county population share 7.690*** 8.368*** 7.244*** 5.716** 4.938 21.344*** 21.833*** 20.472*** 19.285*** 17.768***
(2.429) (2.425) (2.423) (2.652) (3.033) (2.959) (2.488) (2.625) (4.095) (4.924)

real per capita GDP 25.516* 25.016** 24.505* 25.151* 19.916 12.877 12.797 11.301 13.859 5.158
(13.036) (12.735) (13.915) (14.042) (14.179) (21.430) (20.876) (22.841) (24.431) (24.872)

weighted population distance 0.228 0.172 -0.138 -0.015 0.130 1.665 1.459 1.001 1.227 1.468
(0.736) (0.692) (0.731) (0.713) (0.699) (1.162) (1.157) (1.341) (1.287) (1.168)

historical patent rate -8.472 -10.143 -2.125 -1.624 -16.621 81.843*** 84.366*** 94.026*** 96.125*** 72.035***
(12.277) (10.688) (13.508) (13.087) (12.001) (23.490) (22.298) (25.057) (25.015) (24.235)

historical patent sum (000s) 14.206** 10.834* 15.015** 11.763 7.013 35.046*** 30.311*** 36.328*** 32.706*** 27.172***
(6.193) (6.109) (6.868) (7.140) (7.008) (7.646) (7.717) (8.364) (8.823) (9.568)

agricultural patent rate -660.502*** -690.886*** -661.819*** -678.073*** -676.243*** -781.117*** -830.362*** -786.161*** -813.488*** -790.282***
(171.918) (221.549) (186.359) (164.218) (229.431) (260.257) (307.499) (277.241) (259.137) (305.892)

health care patent rate 4.696 5.210 3.834 4.521 7.453 5.060 5.207 3.438 3.846 8.353
(16.067) (18.142) (17.761) (17.759) (17.888) (24.276) (28.082) (27.490) (27.089) (27.230)

horizontal fragmentation 15.842** 6.038 29.743** 18.646
(6.287) (5.522) (13.430) (14.185)

vertical fragmentation 21.750*** 20.257*** 28.085*** 21.458**
(6.997) (6.835) (7.437) (9.663)

horizontal scal dispersion 18.181 9.932 31.168 20.389
(20.115) (21.113) (27.339) (31.869)

vertical scal dispersion 327.397 923.371 204.306 1164.198
(630.093) (632.519) (904.526) (1226.659)

N 362 362 362 362 362 362 362 362 362 362
Adj. R2 0.595 0.612 0.581 0.593 0.617 0.618 0.624 0.598 0.606 0.640
IV Sargan P 0.991 0.984 0.924 0.867 0.750 0.294 0.252 0.237 0.188 0.420
Cragg-Donald F-stat 3965.035 327.017 43.465 143.590 3965.035 327.017 43.465 143.590
Moran’s I p-value 0.390 0.538 0.328 0.399 0.501 0.132 0.206 0.142 0.173 0.161

This table presents the eect of various measures of regional governance fragmentation on the concentration (or diusion) of a region’s innovation among distinct product/technology classes. The dependent variables are the
Herfandahl-Hirschman indices of concentration among distinct product classes of patents awarded to organizations or individual inventors. Larger values indicate more concentrated innovation. Every governance fragmentation
variable is treated as endogenous using the region’s Herfandahl-Hirschman index of church denominations from 1952 and the endogenous variable’s value from 1972 as instruments. The row ’Cragg-Donald F-statistic’ denotes
the rst-stage F statistic for the strength of the instruments. The row ’IV Sargan’ shows the p-value from the Sargan test under the null hypothesis that at least one of the instruments is uncorrelated with the error term.
The row ’Moran’s I p-value’ reports the p-value of residual spatial correlation using an inverse distance weighting matrix. Standard errors are in parantheses and are clustered at the state dimension. *** denotes signicance
at the 1 percent level, ** at the 5 percent level, and * at the 10 percent level. Models were estimated with a constant term and state xed eects that are not reported. Most variables are the average over the period from
1990 to 2018. See the notes to Table 1 for exceptions, variable denitions, and sources.
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Table 7: Innovator Concentration and Special-Purpose Governments

Dependent variable:
organization concentration individual concentration

(1) (2) (3) (4) (5) (6)
2SLS 2SLS 2SLS 2SLS 2SLS 2SLS

share of jobs in STEM occupations -465.529*** -458.568*** -440.908*** -912.571*** -866.608*** -856.732***
(74.858) (65.637) (69.232) (111.009) (107.583) (104.974)

economic freedom: overall -509.293*** -513.099*** -498.784*** -465.165*** -449.272** -441.291**
(132.735) (130.414) (128.664) (166.644) (175.509) (176.890)

venture capital per capita 44.509 25.115 29.191 17.064 -19.810 -17.584
(54.380) (52.413) (54.554) (103.505) (101.228) (102.803)

percent 25 and older with degree -3.097 -1.808 -1.452 23.430** 26.954*** 27.156***
(9.017) (9.388) (9.375) (9.758) (9.575) (9.568)

per capita university r & d spending -552.797** -541.831** -548.097** -1786.149*** -1772.076*** -1775.546***
(255.168) (266.571) (268.520) (370.568) (374.932) (380.246)

across-MSA inventor network 1517.319*** 1531.081*** 1522.773*** 887.026*** 903.923*** 899.320***
(500.817) (518.125) (511.448) (305.272) (326.193) (323.403)

net job creation rate -76.573 -55.351 -55.086 -202.755** -154.317** -154.115**
(68.480) (69.457) (69.159) (79.713) (76.151) (76.810)

HHI employment 658.590*** 619.522*** 634.682*** 792.210*** 729.821** 738.185**
(218.662) (220.194) (221.494) (304.916) (304.773) (306.940)

export jobs -8.244 -15.086 -20.411 209.494*** 184.912*** 181.922***
(34.309) (30.241) (31.492) (49.476) (55.274) (54.377)

population (millions) -95.216* -62.175 -60.783 -224.597*** -147.507** -146.646**
(48.828) (47.077) (47.053) (69.203) (62.141) (61.986)

largest county population share 8.347*** 9.140*** 9.173*** 21.697*** 23.547*** 23.568***
(2.394) (2.480) (2.471) (2.658) (2.828) (2.759)

real per capita GDP 13.630 17.048 15.791 13.276 18.852 18.159
(15.166) (15.030) (14.907) (22.449) (21.352) (21.432)

weighted population distance 0.051 0.134 0.144 1.682 1.887 1.893
(0.726) (0.795) (0.770) (1.277) (1.268) (1.257)

historical patent rate -1.519 4.176 0.593 85.434*** 92.178*** 90.192***
(10.309) (11.786) (10.476) (26.241) (25.272) (25.398)

historical patent sum (000s) 12.524* 9.021 9.504 28.642*** 21.547*** 21.808***
(7.332) (6.618) (6.921) (8.785) (8.124) (8.148)

agricultural patent rate -573.647*** -527.666*** -544.612*** -886.496*** -811.532*** -820.875***
(164.026) (149.888) (165.249) (267.925) (269.112) (272.486)

health care patent rate 1.175 4.728 3.928 1.908 8.572 8.135
(18.482) (17.410) (17.919) (28.848) (26.200) (26.691)

vertical fragmentation, special purpose 19.194** 10.059 26.183*** 5.566
(9.375) (9.491) (8.592) (8.559)

vertical fragmentation, school districts 65.539*** 50.216* 121.963*** 113.575***
(21.691) (25.711) (22.464) (25.247)

N 362 362 362 362 362 362
Adj. R2 0.655 0.650 0.654 0.635 0.646 0.646
IV Sargan P 0.343 0.238 0.243 0.119 0.219 0.215
Cragg-Donald F-stat 292.191 327.369 292.191 327.369
Moran’s I p-value 0.444 0.426 0.451 0.182 0.270 0.263

This table presents the eect of various measures of regional governance fragmentation on the concentration (or diusion) of a region’s innovation among
distinct inventors. The dependent variables are the Herfandahl-Hirschman indices of concentration among distinct organizational or individual inventors.
Larger values indicate more concentrated innovation. Every governance fragmentation variable is treated as endogenous using the region’s Herfandahl-
Hirschman index of church denominations from 1952 and the endogenous variable’s value from 1972 as instruments. The row ’Cragg-Donald F-statistic’
denotes the rst-stage F statistic for the strength of the instruments. The row ’IV Sargan’ shows the p-value from the Sargan test under the null hypothesis
that at least one of the instruments is uncorrelated with the error term. The row ’Moran’s I p-value’ reports the p-value of residual spatial correlation using
an inverse distance weighting matrix. Standard errors are in parantheses and are clustered at the state dimension. *** denotes signicance at the 1 percent
level, ** at the 5 percent level, and * at the 10 percent level. Models were estimated with a constant term and state xed eects that are not reported.
Most variables are the average over the period from 1990 to 2018. See the notes to Table 1 for exceptions, variable denitions, and sources.
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Table 8: Innovation Concentration and Special-Purpose Governments

Dependent variable:
organization product concentration individual product concentration

(1) (2) (3) (4) (5) (6)
2SLS 2SLS 2SLS 2SLS 2SLS 2SLS

share of jobs in STEM occupations -409.003*** -409.965*** -384.554*** -857.665*** -813.532*** -802.616***
(71.209) (64.579) (66.911) (108.757) (104.178) (102.041)

economic freedom: overall -449.560*** -459.697*** -439.115*** -448.838*** -434.133** -425.306**
(123.987) (124.388) (120.764) (161.042) (169.953) (171.154)

venture capital per capita 25.371 4.351 10.182 -4.821 -41.463 -38.988
(62.080) (60.389) (61.853) (103.218) (101.703) (103.390)

percent 25 and older with degree 3.280 4.399 4.913 24.802** 28.254*** 28.476***
(8.212) (8.448) (8.403) (9.777) (9.569) (9.574)

per capita university r & d spending -637.979*** -624.331*** -633.324*** -1699.197*** -1684.895*** -1688.739***
(221.318) (225.368) (230.128) (350.798) (361.045) (365.531)

across-MSA inventor network 1231.031*** 1248.354*** 1236.429*** 739.580*** 756.806** 751.708**
(442.978) (464.079) (453.667) (277.388) (299.167) (295.568)

net job creation rate -134.826** -113.926* -113.511* -156.763** -109.011 -108.803
(63.281) (67.479) (66.033) (73.899) (70.165) (70.752)

HHI employment 637.995*** 592.562*** 614.301*** 745.831*** 683.276** 692.551**
(194.374) (192.502) (195.211) (278.646) (275.143) (278.343)

export jobs 0.835 -3.571 -11.241 218.467*** 194.585*** 191.283***
(36.197) (33.360) (34.779) (54.971) (60.359) (59.775)

population (millions) -106.811** -74.709 -72.652 -253.946*** -178.013*** -177.083***
(43.996) (45.449) (44.124) (65.491) (57.235) (57.109)

largest county population share 7.950*** 8.721*** 8.769*** 21.143*** 22.966*** 22.988***
(2.436) (2.391) (2.405) (2.540) (2.602) (2.533)

real per capita GDP 24.552* 28.496** 26.693** 12.511 18.095 17.327
(12.884) (12.929) (12.725) (21.317) (20.376) (20.369)

weighted population distance 0.125 0.202 0.217 1.378 1.579 1.585
(0.678) (0.786) (0.746) (1.200) (1.194) (1.181)

historical patent rate -9.979 -2.745 -7.890 86.121*** 93.015*** 90.815***
(10.880) (11.515) (10.712) (22.777) (22.277) (21.964)

historical patent sum (000s) 12.137* 8.453 9.142 32.224*** 25.195*** 25.485***
(6.196) (5.949) (6.014) (7.732) (7.071) (7.046)

agricultural patent rate -703.695*** -650.621*** -674.917*** -842.654*** -767.576*** -777.939***
(214.896) (194.759) (218.701) (291.911) (296.951) (301.533)

health care patent rate 3.944 7.819 6.674 3.551 10.178 9.692
(18.375) (16.892) (17.708) (28.257) (25.510) (26.069)

vertical fragmentation, special purpose 23.482*** 14.435 26.503*** 6.168
(8.596) (9.067) (9.365) (9.086)

vertical fragmentation, school districts 71.720*** 49.792* 121.319*** 112.000***
(21.336) (25.816) (20.438) (22.836)

N 362 362 362 362 362 362
Adj. R2 0.609 0.598 0.608 0.618 0.629 0.631
IV Sargan P 0.936 0.866 0.890 0.214 0.365 0.359
Cragg-Donald F-stat 292.191 327.369 292.191 327.369
Moran’s I p-value 0.504 0.563 0.578 0.190 0.304 0.296

This table presents the eect of various measures of regional governance fragmentation on the concentration (or diusion) of a region’s innovation among
distinct product/technology classes. The dependent variables are the Herfandahl-Hirschman indices of concentration among distinct product classes of
patents awarded to organizations or individual inventors. Larger values indicate more concentrated innovation. Every governance fragmentation variable is
treated as endogenous using the region’s Herfandahl-Hirschman index of church denominations from 1952 and the endogenous variable’s value from 1972
as instruments. The row ’Cragg-Donald F-statistic’ denotes the rst-stage F statistic for the strength of the instruments. The row ’IV Sargan’ shows the
p-value from the Sargan test under the null hypothesis that at least one of the instruments is uncorrelated with the error term. The row ’Moran’s I p-value’
reports the p-value of residual spatial correlation using an inverse distance weighting matrix. Standard errors are in parantheses and are clustered at the
state dimension. *** denotes signicance at the 1 percent level, ** at the 5 percent level, and * at the 10 percent level. Models were estimated with a
constant term and state xed eects that are not reported. Most variables are the average over the period from 1990 to 2018. See the notes to Table 1 for
exceptions, variable denitions, and sources.
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Table A.1: First-Stage Regression Results

Dependent variable:
horizontal fragmentation vertical fragmentation horizontal dispersion vertical dispersion

(1) (2) (3) (4)
OLS OLS OLS OLS

share of jobs in STEM occupations -0.387** -1.279** 0.532 -0.006
(0.179) (0.578) (0.539) (0.007)

economic freedom: overall 0.556** 0.684 -2.785*** -0.006
(0.232) (0.725) (1.057) (0.013)

venture capital per capita 0.060 -0.065 -0.118 -0.012***
(0.074) (0.234) (0.387) (0.004)

percent 25 and older with degree 0.005 -0.050 -0.049 0.000
(0.018) (0.042) (0.059) (0.001)

per capita university r & d spending -0.332 1.000 -1.139 0.000
(0.558) (1.324) (2.407) (0.028)

across-MSA inventor network 0.198 -0.222 0.529 0.013
(0.256) (0.408) (0.398) (0.012)

net job creation rate -0.011 0.060 0.025 0.002
(0.101) (0.369) (0.424) (0.009)

HHI employment 0.809** 0.074 -2.911** 0.009
(0.319) (1.292) (1.249) (0.027)

export jobs 0.061 0.210 -0.240 0.001
(0.067) (0.284) (0.276) (0.004)

population (millions) -0.087 -0.689* -0.108 -0.016***
(0.093) (0.390) (0.310) (0.004)

largest county population share 0.002 0.002 -0.021 0.002***
(0.004) (0.014) (0.015) (0.000)

real per capita GDP -0.015 0.031 0.087 0.001
(0.019) (0.111) (0.093) (0.002)

weighted population distance -0.002 -0.005 0.002 0.000*
(0.002) (0.006) (0.005) (0.000)

historical patent rate 0.040 0.262*** 0.145* 0.002**
(0.051) (0.097) (0.076) (0.001)

historical patent sum (000s) -0.004 0.050 -0.062* 0.002***
(0.010) (0.047) (0.037) (0.000)

agricultural patent rate -0.176 3.710* 0.505 -0.010
(0.398) (2.245) (2.103) (0.032)

health care patent rate 0.023 -0.003 -0.025 -0.001
(0.023) (0.086) (0.102) (0.001)

hhi churches 0.007 -0.022 0.074* 0.000
(0.011) (0.037) (0.042) (0.001)

horizontal fragmentation, 1972 0.879***
(0.021)

vertical fragmentation, 1972 0.806***
(0.083)

horizontal scal dispersion, 1972 0.400***
(0.050)

vertical scal dispersion, 1972 0.589***
(0.057)

N 362 362 362 362
Adj. R2 0.631 0.628 0.621 0.627
First-Stage F 3965.035 327.017 43.465 143.590

This table presents the rst-stage regressions. Outcome variables are the MSA averages using data from the Census Bureau’s Census of Governments in 1992,
1997, 2002, 2007, and 2017. Instruments are the values of the outcome variables from 1972 and the MSA’s Herfandahl-Hirschman index of church denominations
from 1952. The row ’First-Stage F’ denotes the Cragg-Donald statistic for the strength of the instruments. Standard errors are in parantheses and are clustered
at the state dimension. *** denotes signicance at the 1 percent level, ** at the 5 percent level, and * at the 10 percent level. Models were estimated with a
constant term and state xed eects that are not reported. Most covariates are the average over the period from 1990 to 2018. See the notes to Table 1 for
exceptions, variable denitions, and sources.
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